# The Crystal Structure of NbOCl<sub>3</sub>\*

BY DONALD E. SANDS, ALLAN ZALKIN AND ROBERT E. ELSON

University of California Radiation Laboratory, Livermore, California, U.S.A.

(Received 12 May 1958 and in revised form 15 July 1958)

NbOCl<sub>3</sub> crystallizes in the tetragonal space group,  $P4_2/mnm$ . There are four formula units in the unit cell with  $a_0 = 10.87$  and  $c_0 = 3.96$  Å. This compound forms peculiar polymeric chains of NbOCl<sub>3</sub> dimers. The dimer has the same shape as the NbCl<sub>5</sub> dimer which has been described as two octahedra sharing an edge. These NbOCl<sub>3</sub> dimers form infinite linear chains along the  $c_0$  direction through Nb–O–Nb bonds.

## Introduction

The interesting molecular dimerization found in solid  $NbCl_5$  (Zalkin & Sands, 1958) has prompted the study of other compounds of niobium and chlorine.  $NbOCl_3$  is a co-product in the synthesis of  $NbCl_5$  and like  $NbCl_5$  is volatile and can be sublimed, but at slightly higher temperatures.

### Experimental

Samples of niobium oxychloride were prepared by the reaction of an excess of  $Nb_2O_5$  with  $CCl_4$  (Remy, 1956);  $NbCl_5$  and  $NbOCl_3$  are both produced in the reaction.  $NbCl_5$  is more volatile and was distilled away from the  $NbOCl_3$  at 100 °C. in vacuo. At 200 °C.,  $NbOCl_3$  was distilled from the unreacted oxide. The product is hygroscopic with a fibrous appearance resembling white 'cotton-batting'; this was transferred in an argon-filled dry box to 0.3 mm. quartz capillaries. Crystals suitable for diffraction studies were obtained by heating these capillaries to about 350 °C. and cooling slowly to room temperature. The crystals of  $NbOCl_3$  tend to grow into long, slender, colorless needles; twinning could not be avoided.

Oscillation and Weissenberg photographs of a single crystal of NbOCl<sub>3</sub> revealed a tetragonal unit cell with:

$$a_0 = 10.87 \pm 0.01, \ c_0 = 3.96 \pm 0.01 \text{ Å}$$
.

Four NbOCl<sub>3</sub> formula units per unit cell result in a calculated density of  $3.04 \text{ g.cm.}^{-3}$ . The diffraction symmetry and systematic extinctions were characteristic of space groups  $P4_2nm$ ,  $P\overline{4}n2$ , and  $P4_2/mnm$ . It was also observed that hk0 reflections with h = 4n were weak or missing unless k = 4n. Furthermore, the general pattern of the diffraction spots corresponding to the hk0 reflections was repeated on all layers with l even, and the pattern of the hkl reflections was repeated on all l odd layers.

The specimen of NbOCl<sub>3</sub> on which intensity measurements were made consisted of a bundle of three crystals, each approximately 0.02 mm. in diameter, aligned about a common  $c_0$  axis. A series of rotation pictures were taken with Mo  $K\alpha$  radiation, with exposures ranging from one to fifty-four hours. The intensity measurements were made on rotation rather than Weissenberg photographs to avoid the resolution difficulties resulting from the use of a crystal triplet. The intensities were measured by visual comparison with a standard scale, only those reflections being included that could unambiguously be identified on the films. A total of 61 independent intensities were recorded, from the layer lines 0 through 3. To these were added 39 reflections which were too weak to be observed on long-exposure Weissenberg films taken with Cu  $K\alpha$  radiation, giving a total of 100 reflections to be included in the least-squares refinements.

The intensities of the hk0 reflections from a single crystal 0.05 mm. in diameter, recorded on a Weissenberg film made with Cu  $K\alpha$  radiation, were also measured. No absorption corrections were made.

#### **Determination of structure**

The very weak intensities recorded for hk0 reflections with  $h = 4n, k \neq 4n$  suggested a niobium atom position of  $\frac{1}{8}, \frac{1}{8}, z$ . The similarity of the diffraction patterns of all layers with l = 2n, and also of all layers with l = 2n+1, further suggested that z should be 0 or  $\frac{1}{2}$ . In terms of space group  $P4_2/mnm$ , this corresponds to the niobiums occupying positions 4f:  $\pm (x, x, 0; \frac{1}{2} + x, \frac{1}{2} - x, \frac{1}{2})$  (International Tables for X-ray Crystallography, 1952).

The Fourier projection  $\varrho(x, y)$  was computed using the signs of the structure factors computed from these niobium positions and the hk0 data obtained from the Weissenberg film made with Cu  $K\alpha$  radiation. The chlorine atoms were revealed by this projection to be occupying the  $P4_2/mnm$  positions  $8i: \pm (x, y, 0; y, x, 0;$  $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}; \frac{1}{2}+y, \frac{1}{2}-x, \frac{1}{2})$  with x = 0.34, y = 0.18, and 4g: with x = 0.10. The structure at this stage thus consisted of planar Nb<sub>2</sub>Cl<sub>6</sub> groups with two of the chlorine atoms involved in bridge bonds.

The positions of the oxygen atoms were not indicated by the  $\rho(x, y)$  projection, except possibly as an explanation for the relatively high electron density

<sup>\*</sup> This work was performed under the auspices of the U.S. Atomic Energy Commission.

Table 1. Observed and calculated structure factors for NbOCl<sub>a</sub>

| hkl          | $F_{o}$    | $F_{c}$ | hk    | l Fo   | $F_{c}$   | hkl    | $F_{o}$    | $F_{c}$ |   | hkl        | $F_o$     | $F_c$ |
|--------------|------------|---------|-------|--------|-----------|--------|------------|---------|---|------------|-----------|-------|
| 200          | < 17       | < 1     | 64    | 0 < 7  | < 1       | 10,2,1 | 82         | -83     |   | 622        | < 39      | 16    |
| 400          | 462        | -462    | 74    | 0 < 43 | -2        | 531    | 105        | 110     |   | 722        | 63        | -15   |
| 600          | $<\!36$    | -21     | 84    | 0 136  | -127      | 631    | 54         | -51     |   | 822        | $<\!45$   | -10   |
| 800          | 163        | 163     | 94    | 0 < 49 | 8         | 731    | 41         | -33     |   | 922        | 88        | 78    |
| 210          | 203        | -212    | 10,4, | 0 < 52 | -21       | 441    | $<\!35$    | -34     |   | 432        | $<\!34$   | -15   |
| 310          | 70         | 88      | 65    | 0 132  | -130      | 541    | 176        | 174     | i | 532        | 49        | 55    |
| 510          | 181        | -169    | 75    | 0 45   | 40        | 641    | $<\!40$    | 4       |   | <b>632</b> | 63        | 65    |
| 610          | 150        | 156     | 85    | 0 <47  | -20       | 651    | $<\!42$    | - 7     | İ | 732        | 61        | -55   |
| 810          | $<\!43$    | 27      | 95    | 0 118  | -114      | 761    | $<\!46$    | 16      |   | 832        | $<\!\!46$ | - 4   |
| 910          | 101        | 95      | 86    | 0 < 49 | 20        | 861    | $<\!49$    | 12      | ļ | 442        | 204       | 216   |
| 10,1,0       | 99         | -89     | 96    | 0 73   | 66        |        |            |         |   | 542        | $<\!39$   | 16    |
| 220          | $<\!24$    | -19     |       |        |           | 202    | $<\!21$    | < 1     |   | 642        | $<\!21$   | < 1   |
| 420          | $<\!31$    | 9       | 10    | 1 272  | 260       | 402    | <b>290</b> | -296    |   | 742        | $<\!45$   | -2    |
| 520          | 200        | 196     | 30    | 1 106  | -129      | 602    | $<\!38$    | -14     |   | <b>842</b> | 92        | 96    |
| 720          | $<\!40$    | -17     | 11    | 1 173  | -180      | 802    | 122        | 120     |   | 552        | 140       | 135   |
| 820          | $<\!\!44$  | -13     | 21    | 1 34   | -38       | 112    | 120        | 99      |   | 652        | 90        | -95   |
| 920          | 115        | -103    | 31    | 1 92   | -107      | 212    | 141        | -130    |   | 852        | $<\!49$   | -14   |
| 10,2,0       | $<\!50$    | - 9     | 41    | 1 161  | -164      | 312    | 60         | -59     |   |            |           |       |
| 430          | $<\!33$    | -25     | 51    | 1 116  | 124       | 512    | 105        | -114    |   | 303        | 77        | -66   |
| 530          | 80         | 79      | 61    | 1 48   | 45        | 612    | 97         | 108     |   | 313        | <b>62</b> | -54   |
| 630          | 89         | 94      | 10,1, | 1 < 49 | 11        | 812    | $<\!45$    | 19      |   | 413        | <b>76</b> | -85   |
| 730          | 72         | -75     | 22    | 1 87   | <b>26</b> | 912    | 68         | 72      |   | 513        | 51        | 66    |
| 830          | $<\!44$    | - 5     | 42    | 1 < 31 | 20        | 222    | $<\!25$    | -11     |   | 333        | 49        | - 7   |
| 9 <b>3</b> 0 | 63         | -47     | 52    | 1 < 34 | 13        | 322    | <b>69</b>  | -38     |   | 533        | 52        | 60    |
| 10,3,0       | <b>76</b>  | -79     | 72    | 1 < 40 | - 7       | 422    | $<\!32$    | 6       |   | 543        | 82        | 97    |
| 440          | <b>309</b> | 314     | 92    | 1 < 46 | - 3       | 522    | 124        | 135     |   |            |           |       |

found at the sites of the niobium atoms. However, the tendency of the NbOCl<sub>3</sub> crystals to grow as fibers along  $c_0$  supported the conclusion that the planar Nb<sub>2</sub>Cl<sub>6</sub> groups are joined by Nb-O-Nb bonds parallel to  $c_0$ . In terms of space group  $P4_2/mnm$ , this corresponds to oxygen positions  $4g: \pm (x, \overline{x}, 0; \frac{1}{2} + x, \frac{1}{2} + x, \frac{1}{2})$ , with  $x = \frac{3}{8}$ .

These atomic positions were refined by successive applications of the least-squares method. Individual isotropic temperature factors were assigned to each atom and were included in the refinements. Separate scale factors for each layer were also included. The value of the reliability coefficient,  $R = \Sigma |F_o - F_c|/\Sigma |F_o|$ , was 0.071 at the end of the refinements. When the oxygen atoms were omitted, the structure could be refined to an R of 0.080.

The observed and calculated values of the structure factors included in the calculations are listed in Table 1. In Table 2 are the final values of the atomic para-

| Table 2. | Atomic | parameters | in | NbOCl |
|----------|--------|------------|----|-------|
|          |        |            |    |       |

| Positions | Atom          | x                 | $\boldsymbol{y}$  | z | B (Å <sup>2</sup> ) |
|-----------|---------------|-------------------|-------------------|---|---------------------|
| 4f        | $\mathbf{Nb}$ | $0.127 \pm 0.001$ | $0.127 \pm 0.001$ | 0 | 3.0                 |
| 4g        | $Cl_A$        | $0.104 \pm 0.003$ | 0.896 + 0.003     | 0 | $3\cdot 2$          |
| 8i        | $Cl_C$        | $0.331 \pm 0.002$ | $0.105 \pm 0.002$ | 0 | 3.3                 |
| 4g        | 0 Č           | 0.385 + 0.007     | 0.615 + 0.007     | 0 | 3.0                 |

meters, including the temperature factors resulting from the least-squares refinements. The standard deviations of the parameters were evaluated by the method of Cruickshank (1949).

#### **Discussion of structure**

The molecular structure of NbOCl<sub>3</sub> consists of planar Nb<sub>2</sub>Cl<sub>6</sub> groups joined by Nb–O–Nb bonds into infinite

chains parallel to  $c_0$ . This structure, in which the niobium atoms are connected by chlorine bridge bonds, is shown in Fig. 1. The packing arrangement of the chains is shown in Fig. 2. Table 3 lists the interatomic distances in NbOCl<sub>3</sub>. The standard deviations of these



Fig. 1. The molecular configuration of NbOCl<sub>3</sub> and NbCl<sub>5</sub>.



Fig. 2. Packing arrangement in NbOCl<sub>a</sub>.

distances were computed from the standard deviations of the atomic parameters by the method of Cruickshank & Robertson (1953).

The planar Nb<sub>2</sub>Cl<sub>6</sub> groups are also present in crystalline niobium pentachloride (Zalkin & Sands, 1958). The molecular structure of this compound is shown in Fig. 1. In the case of niobium pentachloride, in which the molecular unit is Nb<sub>2</sub>Cl<sub>10</sub>, the planarity of the Nb<sub>2</sub>Cl<sub>6</sub> group is not required by the space group, but it is planar to within the precision of the parameters. The molecular symmetry of both Nb<sub>2</sub>Cl<sub>10</sub> and NbOCl<sub>3</sub> is  $D_{2h}$ -mmm.

The four Nb–Cl<sub>B</sub> bonds of niobium pentachloride are not perpendicular to the plane of the Nb<sub>2</sub>Cl<sub>6</sub>, but are bent toward each other to form an angle of about  $84^{\circ}$  with a line drawn through the two niobium atoms. The parameters produced by the least-squares refine-

Table 3. Interatomic distances in NbOCl.

| $\begin{array}{c} \mathrm{Nb-2} \ \mathrm{Cl}_{\mathcal{A}} \\ -2 \ \mathrm{Cl}_{\mathcal{C}} \\ -2 \ \mathrm{O} \\ -\mathrm{Nb} \end{array}$                                                       | $\begin{array}{c} 2 \cdot 53 \pm 0 \cdot 03 \text{ \AA} \\ 2 \cdot 24 \pm 0 \cdot 02 \\ 1 \cdot 99 \pm 0 \cdot 01 \\ 3 \cdot 91 \pm 0 \cdot 02 \end{array}$ | Bridge bond                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| $\begin{array}{c} \operatorname{Cl}_{A} - 2 \operatorname{Nb} \\ - \operatorname{Cl}_{A} \\ -2 \operatorname{O} \\ -2 \operatorname{Cl}_{C} \end{array}$                                            | $\begin{array}{c} 2{\cdot}53\pm 0{\cdot}03 \ \text{\AA} \\ 3{\cdot}22\pm 0{\cdot}05 \\ 3{\cdot}11\pm 0{\cdot}06 \\ 3{\cdot}36\pm 0{\cdot}04 \end{array}$    | Bridge bond                      |
| $-4 \operatorname{Cl}_{C}$                                                                                                                                                                          | $3.80\pm0.03$                                                                                                                                               | Intermolecular                   |
| $\begin{array}{c} \operatorname{Cl}_{\mathcal{C}^{-}} & \operatorname{Nb} \\ & -2 & \operatorname{O} \\ & - & \operatorname{Cl}_{\mathcal{A}} \\ & - & \operatorname{Cl}_{\mathcal{C}} \end{array}$ | $\begin{array}{c} 2 \cdot 24 \pm 0 \cdot 02 \text{ \AA} \\ 3 \cdot 08 \pm 0 \cdot 06 \\ 3 \cdot 36 \pm 0 \cdot 04 \\ 3 \cdot 49 \pm 0 \cdot 03 \end{array}$ |                                  |
| $-2 \operatorname{Cl}_A$<br>$-4 \operatorname{Cl}_C$                                                                                                                                                | $3.80 \pm 0.03$<br>$3.64 \pm 0.03$                                                                                                                          | Intermolecular<br>Intermolecular |
| $\begin{array}{c} \mathrm{O-2\ Nb}\\ -2\ \mathrm{Cl}_{\mathcal{A}}\\ -4\ \mathrm{Cl}_{\mathcal{C}}\\ - \ \mathrm{O} \end{array}$                                                                    | $\begin{array}{c} 1 \cdot 99 \pm 0 \cdot 01 \text{ \AA} \\ 3 \cdot 11 \pm 0 \cdot 06 \\ 3 \cdot 08 \pm 0 \cdot 06 \\ 3 \cdot 55 \pm 0 \cdot 11 \end{array}$ |                                  |

ments of the NbOCl<sub>3</sub> data suggest a corresponding lack of linearity of the Nb–O–Nb bond. The bending of these bonds may be attributed to the steric effect of the chlorines in the planar Nb<sub>2</sub>Cl<sub>6</sub> group, the final position of Cl<sub>B</sub> in NbCl<sub>5</sub> and of O in NbOCl<sub>3</sub> being nearly equidistant from atoms Cl<sub>A</sub> and Cl<sub>C</sub>; these distances (3·3 and 3·1 Å) are less than the normal van der Waals distances (3·6 and 3·2 Å).

The structure of gaseous  $NbOCl_3$  is not known. However, vapor density measurements indicate that the formula of the gaseous molecules is  $NbOCl_3$  (Remy, 1956).

#### References

- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 154.
- CRUICKSHANK, D. W. J. & ROBERTSON, A. P. (1953). Acta Cryst. 6, 698.
- International Tables for X-ray Crystallography (1952), vol. 1. Birmingham: Kynoch Press.
- REMY, H. (1956). Treatise on Inorganic Chemistry, vol. 2, p. 109. Amsterdam: Elsevier Publishing Company.
- ZALKIN, A. & SANDS, D. E. (1958). Acta Cryst. 11, 615.